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--- TECHNICAL MEMORANDUM 1342

SPIRAL MOTIONS OF VISCOUS

By Georg Hemel

INTRODUCTION

FLuIDs*

The equations for the plane motion of viscous fluids of constant
volume are, after elimination of the pressure and introduction of the
stream function $ by which the velocity components

v w .8.—
x by ‘Y = ax

are expressed, reduced to the one equation

(I)

therein o indicates the ratio between viscosity coefficient and spe-
cific mass p, and A signifies the Laplace operator.

This equation is satisfied by all potential motions

A+=O

however, this fact is of little significance since viscous fluids adhere
to solid walls and, from well-known considerations of function theory,
there cannot exist a potential motion which would do so. Otherwise,
properly speaking, only Poiseuille’s laminar motion is known as exact
solution of equation (I) and that solution does not even show the sig-
nificance of the quadratic terms because they identically disappear
there.

*“Spiralf&mige Bewegungen z&er Fltissigkeiten.” Jahresber. d.
deutschen Math. Ver. 25, 1917, pp. 34-60.
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Under these circumstances it seems perhaps useful to know a few
more exact solutions of equation (I) for which the quadratic terms do
not disappear; such solutions will be indicated below according to two
methods.

In both cases, one deals with motions in spiral-shaped streamlines
(which are observed frequently).

Third, we shall, in addition, investigate the neighborhood solu-
tions to pure radial flow.

FIRST PART

We raise the question:

Are there solutions of equation (I) which are not potential motions
for which, however, the stream paths are the same as for a potential
motion whereas the velocity distribution is to be different?

We shall be able to indicate such solutions, in fact all of them:
the streamlines are logarithmic spirals (including concentric circles
and pure radial flow); for the velocity distribution, one arrives at an
ordinary differential equation which for pure radial flow leads to
elliptic functions. In the discussion, the influence of the quadratic
terms becomes mnifest in a considerable difference between inflow and
outflow (see paragraphs 7, 8, and 9).

We require, therefore, solutions $ of equation (I) for which

and AQ = O, but not At = O. The latter condition excludes

f“(v) =0

We limit ourselves to steady motions d+ - ().
z-

1. The calculation becomes clearer if first the auxiliary problem
has been solved:
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Transformation of equation (I) into isometric coordinates, that is,
curvilinear coordinates q,X that

q + ix= W(x + iy) = w(z)

Let us thus assume

* = If(T,x) g=$ ‘g=.g

If one denotes

viation

a2v+&b y A’*, there results first, with the abbre-
2 b$

A$=Q

With the double integral extended

A’$

over an arbitrary region, one has

dy =
I

dAd~

Since, however,

II~h-~bx=dW2=Q
axay ayax z
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there follows

~A~~ ~A~$——. ——=
ax ay ay ax

Q2

However,

NACA TM 1342

and

are valid. If one puts the analytic function of z

d2w

z dz2—=a+bi

()
dw 2
z

one obtains
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Finally, there

“-iA$ = QA’(Q

= Q2 A’

5

resuits

( )A’$)=Q2A’ A’$+QA’QA’$ +2Q9#$+~~” ax ax

(
A’$+A’$A~+2~a . aA’$

& ax
L

I
~w 2

lnQ=ln ~ is a harmonic function, thus

A’lnQ=O

hence,

Y=(%+s+(%w=a2
Thus one obtains as the result of the conversion
isometric coordinates V,X for steady motion

+b 2

of equation (I) to

r

)(A’~(a2 +b2 + 2 ~a
)

-~b

therein, a + bi is the analytic function

d2w

z dz6 (w=q+iX, z=x+iy)

()

dw 2

z

‘and A’ denotes the operator

~+ a2
a@ bx2

(II)
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2. We return to the question ‘onpage 2: v must be a mere function
of v

i-f = f(P)

If derivatives, with respect to Q, are denoted by primes, equation (II)
becomes

[ 1f’,’f’b= a fn + f“(a2 +b2) + 2f’”a (III)

f may depend only on P but must not depend on X.

This is certainly possible if a and b do not depend on X, thus,
since a+bi is an analytic function of V + xi, do not depend on Q
either, if a+bi is, therefore

d2w
7

a +bi . 2 %= c

()
dw 2
z

that is, constant. We shall see later (paragraph 3) that this is the
only possibility.

From a and b being constant, there follows

w.. S,ybih(z-zo)+wo

thus, after introduction of the polar coordinates

z-z
o
= redi

v=-
a2 ~ b2(a ln r + ba) +90
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~us, the streamlines T = con.st are identical with the logarithmic
spirals

---
a In r + b~ = const

a.() signifies pure radial flow, b = O flow in concentric circles.
The velocity distribution, however, is givenby equation (III): the
radial component is

the circular component

& - & a2+b2” r

consequently f’ ~ the magnitude

e
2+b

fore, f’ must disappear on solid walls.

of the velocity. There-

one may presuppose left-
thus a and b have dif-

Without restriction of the generality,
hand spirals so that r increases with O,
ferent signs; since, furthermore, -(’T+ iX) is an analytical function
just as 9 + iX, and equation (III) is actually invariant with respect

to a simultaneous sign1 change of T,a,b, one may presuppose

a>O

_b& ~d -~ signify forTherefore, positive velocity components
r aa

f’>o outflow,-

in contrast for

f’<o inflow.

‘Translator’s note: The original says “time change,” obviously a
misprint.
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Since P may be replaced by cV, one may in addition
dition on the constants a and b.

3. We now want to conduct the proof that on the basis

NACA TM 1342

impose a con-

of our require-
ments a and b must be constant, that therefore the flows in loga-
rithmic spirals are the only ones the flow patterns of which correspond
to a potential motion without themselves being a potential motion.

If a and b were not constant, the analytical function a + bi
would produce a conformal transformation of the T + iX-plane; by virtue
of equation (III) which with the abbreviations

A= f’”-— B=&f’ c=f!! 20

(f” = O is excluded) may also be written

a2+b2 -2A(g) a-

the circles (equation (III’)) would
q = const in this transformation.

2B(q)b + C(9)

correspond to

= o (III’)

the straight lines

These circles would therefore have to fozm an isometric curve
family.

However, if the fsmily of curves

g(a,b,q) = O (III’)

is to be an isometric one so that AP = O, the function g must satisfy
the equation

@v2 (- 2gcp gq,aga + g%+)+%,(g:+%2)=o

and this equation must either be identically
quence of equation (III’).

(IV)

satisfied, or be a conse-
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One has

-., ga = Z(a - A), ~=2(b -B), Q=

ga2+ %2 = h(a - A)2+ h(b -

Thus, equation (IV) is quadratic in a
the result that the quadratic terms are
fore, the coefficients of the two terms
conditions

-2A’‘a -2B1’b+C11

B)2 = 4(A2 + B2 - C)

and b; an easy calculation shows
automatically eliminated. There-
must be zero whence follow three

o_A” C’-2AA’-2BB’ .U-C’-2AA’-2I3B’
A’ c -A2-B2 B’

c -A2-B2

.~_c’-2AA’-2BB ‘
c’

c -A2-B2

Hence, there follows further that A’, B’, C’, must be proportional and
furthermore that

must

B’

c -A2-B2

be constant.

The final condition yields

C=~B+~ A=71B-5

or with

al 71—. a —=
2a 20

-7

f~ = ~’f” + pfff and f!,, = yf’f” + bf”
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which, integrated, yields

Comparison of

which must be
son requires

CLf’z+ pf’ + ~

the two values
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and f“=Lyf’2+5f’+q
2

for f’” results in

L#+pf,+e
f!, =2

yf’ + 5

identical with the preceding value of f!,. The compari-

y=o a

u

thus C = A2 = 52 constant

The second condition

B B’=— = const
A2+B2-c B2

however would yield ~ = const and this together with f’‘ = bf’ + ?l
f12

would result in the contradiction

f’ = const

therewith, the proof has been produced.

4. We now turn to the determination of the velocity according to
differential equation (III) which may be integrated once and assumes,
after introduction of the quantity proportional to the velocity at unit
distance

u = f’(q)



—

1

I

I
NACA TM 1342

the form

—
u (

2
)“+2tiu’+ua2+b - ~U2 +C=o

2a

This equation is identical with a damped oscillation which
under the influence of the potential

1.

bus+~az+bzuz+cu
-G 2 ( )

We start with the limiting cases:

The streamlines are concentric circles: b = O.

Then

u. ‘aq(A + Bq)
-S+e

and, because of

u = const + r
( )

2A+B11nr

11

takes place

whereby, the velocity distribution

is given. The exact solution of Conette’s case is also contained therein:
the three constants here are determined from the two limiting values of
the velocity and from the fact that in case of a full turn around the
circular annulus, the pressure must revert to its initial value. An
easy calculation yields Bl = O and thus

v. (2~r-
r

(More details on the determination of
graph 10.)

rl2
)

the pressure are seen in para-
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2. The flow is purely radial: a = O.

The differential equation reads

u !l= b2u. ~u2+C=0
20

and leads to elliptic functions

u’ =
d{

b U3 + 3abu2 + const u + const
-~

‘@J(e, - ‘)(ez - ‘)F3 -‘)

where the three e’s are only subject to the one condition

‘1+e2+e3=3ub

but otherwise are still at disposal.

Since, according to the remark on page 8 one relation between a,b
is still unused, it will be expedient to put

b=-2

so that one obtains, according to page 7

Then the conditional equation for the e reads

‘l+e2+e2= -60

and one has

“ ‘&/(el - ‘)P2 - ‘)(e3 - ‘)
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thus

where ~@g2Jg3 are the three integration constants. For the pressure

(see paragraph-lO) there results the equt ion

$&+*v2)=2’’’’’+2f”
its uniqueness is a priori ensured, thus
the constants.

=—G
does not determine here any of

Discussion of the Radial Flow

5. The condition

‘1+e2+e3 = -6u

requires at least one e to have a negatively

(1)

real part, for instance

‘(e,) ~’(e,) ~R(e3)

then

with the equality sign being valid only when all three e’s have the
same real part.

Furthermore, since this part is real, there must apply

(a) for three real e’s either

or
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(b) for one real e
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where, however, this e may be positive.

Furthermore, two possible types of flow must be distinguished:

1. Either there are no solid walls, thus a source or sink in an
unlimited fluid. Then u must be a periodic function of P, with a
period which is an integral part of 2fi. u = -W is excluded, u = O
need not occur. Therefore, this case can occur only for three real e’s,
and

must be valid.

2. Or there are two solid walls, for instance for 0 = O and for
8 = 01 (which may also be equal 2YC);then at these walls u must be

U=o.

(a) In case of three real e‘s there must be, additionally

>()‘1 =

and either

(a) <u~o‘2 -

or

(b) In the case of one real e, this e must be positive and

O~u~e

One remembers, furthermore, that according to page 7, paragraph 2,
u > 0 signifies outflow, u < 0 signifies inflow; so that one has
inflow in the case of 2(a)(a), and outflow in the case of 2(a)(B), and
2(b) above. For the case 1, both cases may occur.
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6. one must assume

-“

Hence, there

with n being

By the

equation

First Case: Free Flow

O= Oforu=e2 and

f

el

e2 Jel - u)fu - e2)fu - e3

an integral.

known substitution

u=e+
2 (‘1 - ‘2)

becomes

If one now introduces the mean velocit#

and the velocity

u 1
m (‘5el+e2 )

fluctuation

15

(2)

5=el-e2

2At the distance r = 1.

.
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there becomes because of equation (1)

‘2 - ‘3
.60+3um-~b>o

2.—
n

NACA TM 1342

(3)

From this, one may draw several interesting conclusions.

One has

1 +

II1 + *X2(1 - Cos 2*)

w==!!! ““w

(2’)

—. —-—-- ... . .. . . . . .. .. . . .. . .. . .. . . . . . . .... . ... . . ... . . . ..-.-——. . .
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where

Thus the relation (2’) between ~,5, n,u reads, due to the significance

of 22,

or

.

6a+3~-$T128=6U$

with q being a proper fraction.

Since, furthermore

~:&’%

= sinh-lx

(2”)

thus becomes arbitrarily large with increasing Z, one has lim 6 = O,
?t=m

thus,

I,—. .— ---- .. -—-
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From equation (2’‘) there follows

() 2
um>-2u l.-%

4

which, with u = 1, gives as the minimum value

The mean inflow velocity is
more so, the easier movable

~>-;u
therefore considerably limited upward, the
the fluid.

However, this is the only restriction: If urn and the integer n

are selected so that

there exists, certainly, a pertaining 5.

A 5 increases fromFor if
2

lies between zero and 6U +3%

becomes infinite and, hence, qz

zero to the value 60 + 3~, $q28

(becausefor the second value %2

= 1) so that certainly sometime $ q%

nz
becomes equal to 6CJ+3%-6U~ which is presupposed

One sees, furthermore, that for a prescribed period
fluctuation b and for a prescribed fluctuation b the
must increase to infinity with the mean velocity ~.

Second Case: Outflow Between Solid Walls

c,

to be positive.

number n the
period number n

7. The cases Z(a)(p), and 2(b) may be summarized thus
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e > 0 is the maximum velocity (at the distance r = 1); because of

2a=-e2-e =6a+e. 3

and ~ = e2e3 > 0, otherwise, however, arbitrary

U2 +2au+~

may for prescribed e assume all values from U2 + 2au to m, so that

appears not at all restricted downward, but upward restricted by

JJ ~23g e
du

%,max = 20
(e - U)U(U + e + 6u)

since

J dn =fi

+-
(e - U)U

one has

(4)

where e signifies a positive proper fraction.

For the outflow, the width of the wall opening appears therefore
restricted, according to the preceding equation, by the msximum value e
of the velocity. For small velocity and large viscosity, the maximum
lies near m, otherwise, however, lower; with increasing e it drops
below all limits.
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If, therefore, an angle opening smaller than n is prescribed, it
permits an outflow only up to a certain maximum value. If a greater
~utflow quantity is presc~ibed, the
ably separate from the walls.

Also, there is, of course, for

possible where partly inflow partly

jet will, therefore, actually prob-

any prescribed angle 01 a flow

outflow occurs.

Third Case: Inflow Between

8. There remains the case 2(a)(a)

e2~uS0

Solid Walls

all three roots e real,e,
3 ‘2

negative, e~ positive.

Here

% J7.22°
2

J‘2 u-e Z)hdu )(
-e

3 ‘l-” )

o
—— n60 ez

where

(Za=-el+e 3)=6a+e2

p=ele3<0

otherwise, however, arbitrary. Thus, the angle ‘1
may be made arbi-

trarily small for prescribed e2. On the other hand, however, it may

also be made arbitrarily large: one takes, for prescribed e2, the



NACA TM 1342

negative value

impossible by

21

‘3
sufficiently close to e2, as far as this is not made

‘1 < 0“ The sole relation between the e

‘1+e2+e3 = -60

however, results with el > 0 in

-e-e
2 3

> 6cJ

If -e2 ~ 3u, e
3

may actually be assumed arbitrarily close to e2.

If the =imum inflow velocity is larger than 3CS,any angle
‘1

is possible between the solid walls.

If, however, -e2 < 3u, say e3u, where E is a positive proper

fraction, only

-e=e
3

~+(6- 3C)U = -e2 + el + 6(I - C)U

is possible and

f
o

0. = \E du

attains its highest value for ‘1 = o

%,max =

d(U + 3erJ)ru+ (6 - 3E)~(-u)
L --l

l-c ‘II

J 1
6-3 G(2+II)a
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where q and 5 are positive proper fractions. Thus, the maximum of
8. is larger than n.
-1.

When the maximum
openings of the solid

inflow velocity is smaller than 3cr,the angle
walls also may attain any magnitude up to n.

Flow in Spirals

9. Because of
periodic solution,

A free motion
In contrast, there

the damping 2au’ (see paragraph 4, page 11), a
aside from u = const, is not possible.

in logarithmic spirals is always a potential motion.
exist other flows on logarithmic spirals between

solid walls.

In order
angle 79,one
a manner that

to have, for r = const, the variable q agree with the
may furthermore prescribe for the constants a,b, in such
one obtains

thus

a22~ b2 = 1

b=.l?
P

a must be a proper fraction, otherwise it remains arbitrary.

Equation III, once integrated, (see page 10) then reads

u “+2au’+

where P2 = P-2b=2T21

~ Uz
‘Zu + 4U

+C=o

<4, but >a2.
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The velocity at unit distance is

. .
u=

& + b2
r l~b

u is, therefore, the velocity at the distance

r=

If one first omits the
had before except that

/===’

23

u

damping, one has exactly the same case one

is in front of the square root (see page 12). The relation for the e

remains the former one. Since B2 < 4, the angle opening is increased
by this influence 81”

The damping, however, takes effect in the same sense. Nevertheless,
the main result remains correct.

For outflow the admissible angle opening al is restricted by the

maximum flow velocity in such a manner that it tends toward zero when
this velocity increases beyond all limits.

If one puts

u

the above differential equation

= ve-a~

becomes

+ ~ v2e-aT + Ceaq = O
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If v = O is assumed to be

multiplication by 2V’

“2+ (P2 - a2)(v2

From the corresponding

U’2 J’
u

+ 4a U’ du +

‘o

and
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the location of the maximum V. for v,

integration yields

- ‘~~‘ ~L’:‘2e-a’dv+2CL:‘a’d’=0

equation for u

one can see that for equal U. the u-curve will be the steeper,
‘1

therefore the smaller, the larger C. For value close to U. this is

immediately clear from the differential equation, for in case of u’ . 0,
u 11 will be the smaller, the larger C, thus ]u’I the larger; from
the preceding equation one may see, however, that for larger C

[
u’2+4a ‘u’du=u’2 -4a ‘u’du

‘o
J u

has the higher vslue. Hence, follows directly for the ascending branch
(u’ >0) that always Iu’I has the higher value when C is the larger
value. For if u’ would once reach for the initially flatter curve

f

u
(C smaller) the vslue of the steeper curve, u’ du would have to

‘o

f

Uo
have for the former the smaller, thus u’ du the higher value

which for u’ > 0 immediately leads to c~ntradiction since, up to then,
that is between u and Uo~ U’ had been the smaller value. If, how-

ever, u’ < 0, one has in case of a variation of the Cby4/2

U12
A

J

‘o
+4a~ A U’ du=2AC

‘o-” ‘O-”u
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or, since

AU’2 =AIu’I(21u’I +Alu’1)

.-..—

25

AIu’I(21u’I +A[u’1) +
*fuo Alu’l m + 2 ~

‘o-” u

If there were at one point Alu’ = O, then at this point the first
term would, for fixed K!, decrease with decreasing u, that is, go over
from positive to negative values; the second term also would decrease

since the part of the integral ~uo+’l du supervening with

decreasing u would be negative. This is impossible, however, since
the sum of both terms is supposed to be constant 2 N.

Therewith, it has been generally proved that the angle opening %
decreases with increasing C (for fixed Uo); since the maximum possible

l% is desired, the minimum admissible value for C may be assumed.
L

This value is determined from V’2 >0

whence, one may see that the mintium admissible value

negative3.

The above inequalitymust be valid for &ll v’s

zero and for the positive and negative V attained.

v2e-aPdv

of C is zero or

between V. ~d

One may write them

2C2-(’2-oh+ +--a’o-:(V;+‘“v +o-_a(q2+‘0)\
3
According to page 22, fi2- a2 > 0.
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where VO>’TZ are certain mean vslues. One must further

v = Vo, Pol ‘d ~zl must be zero whereas they have

NACA TM 1342

note that, for

maximum values

for v = O. “The severest restriction is due to the absolutely Smaller
value of the right side, thus the minimum admissible C is given by

‘c=-(’2- ‘+OJ8’O’-
~o’ ,Q2’are positive and the maximum

v= o.

2
(

-a V ‘+9.’
2 )

g vo2e

of Q. and P2 which occur for

Consequently, one has for the maximum possible ~1

( )1 )
J]

-aQo’ ‘o ed?dv +
Vf’ = B’ - a2 V02 - v’ - voe

v

[1 -a(Cf)2’+90’) ‘0 eapdv
E ‘0 v2e-@dv - Iv ‘e

2a v 30 Jv
—

= ( )1P’ - a’ V02
1

-V’) -voho-+-a(qo’-qo) +

Since Q. ‘ >90 and 9 ‘ >Cp
2 2

( 0- v)ff2-a’)+g(v+Vo)e-aqgv“ > v

—,- ,..——---- -. 1- ------- -I,-,,. , ,, . . . . ..-.. -—. ..!.. .! !.! . . . . ..! !m ..!
,, ,.-,



NACA TM 1342

and since V2’ <01

27

“2>Fo -9+2-a’)+g(v+.O)e-aoj

whence follows

791< 211

J )P2-a2+ ~ Vo(l + c)e-aol

(Compare formula (4), page 19).

Hence follows that with increasing
‘o‘

thus also with increasing

u,o al must drop below all limits: a certain width of the spiral

permits only a limited outflow velocity.

SECOND PART

10. Since the only spiral motion, possible without walls, of the
type used so far, lead to be a potential motion, exact steady and non-
steady two-dimensionalmotions in free spirals will be investigated
according to another method. ‘

In pohr coordinates the differential equation (I) reads

A .lar&+l #——
r &. & r2 &p2
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Obviously this equation permits solutions which are linear in 9

v=u+q~

in order to make the velocity which has the components

unique and thus enable a free motion, x must be constant. By this
statement, the differential equation becomes

with

Here it is necessary also to investigate the pressure lest perhaps
in a motion about the singular point r=o a multivaluedness of the
pressure becomes evident.

Now one may write the equations of motion without elimination of
the pressure in the following form

or because of the invariance of the last term
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/
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~

i
Hence, follows

I
,1

i By virtue of the differential equation for u the right side is con-

jl stant; thus it must be zero to make the pressure in case of a revolution
:: about r = O revert to its former value, so that one obtains

au_which by introduction of r — – v
ar

assumes the form

Steady Motions

11. The solution independent of t is

X2~+
u=cr

1
+c21nr+c

3

?2

(v)
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If one’disregards the trivial case of potential motion, a spiral motion
the velocity of which disappears at infinity exists when

:+1<0

that is, X < - u, thus a sufficiently strong inflow takes place.

The spirals then have the form

2L+2

9 ..~~=clra+ C2 lnr + C
3

If ~ + 2 < 0, they approach at infinity the logarithmic spirals; near
u

the sink, in contrast, they converge considerably less pronouncedly
toward the sink point, and the vortex velocity is considerably higher
than in case of potential flow in logarithmic spirals.

Unsteady Motions

12. If one uses the formulation

v = entXn(r)

one obtains from equation (V)

Xn” -: ()1+7+a +xn=o ~

thus, with the abbreviation A = 1 + f



,
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where the J are the Bessel functions

If A does not happen to

n2r4
()

1—-
~2 2

1
+...

2!(1+A)(2 +x)

be an integer, rkJX and rhJ-A may be

31

regarded as independent solutions.

13. Similarly to the case of the heat
exist also of equation (V) integrals which
an indeterminatepoint.

conduction equation there
show forr=Oandt =0

Since the differential equation (V) remains unchanged if v is
multiplied by an arbitrary factor, r by a similar factor, t by its
square, there must exist solutions of the form

()r’v=r%%_ .
4c3t

After substitution, one obtains for w the differential equation

When does this equation permit a solution of the form

w= epz

A simple calculation yields

(VI)

v = -1
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and then either
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or

a=2A p=-~-l

One this has two simple integrals of the required type

and

for A = O, both are transformed into the known
conduction equation.

integral of the heat

Let us continue the discussion of the differential equation (VI).

The singular point z = O is a determinate point. The determining
equation reads

~2 +p(a-h)+a2-2hu= O
4

and has the roots

+.:‘1 ‘2 ‘-:



I

so that generally there exist developments of the form

a

(%+clz+c2z2+. . .‘1”2 )
$ and

u

(-n+cl’z+c2’z2+ . . .
‘2=2 )

thus

‘1

and

r2+
j3-?b+

+ c1
r2

K
+
C2

r4

(40t)2

+ . .

p+:
=t

‘2
~

4

l+C1’ 4ot “2’
+...

(4:t)2 -
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1.

with the power series continuously converging since 2=0 is the only
singular point of the differential.equation.

If one assumes p = O, that is, if one desires solution of equa-
tion (V) of the form

r2
~

()
r% —

4cl-t
$1

1

\ an integrationby definite integrals is possible.

The differential equation (VI) reads after introduction of the
roots P1)P2

–iO

.1

z2&w+z&l
(

- Pl
)

-P2+Z’ +WP1P2=0
dz2 dz

(VI‘)

d
,

r–

‘1
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The connection with Gauss’ equation for
be easily recognized. If one makes the

NACA TM 1342

the hypergeometric function can
Euler transformation

w=Je-3P-Yy(s)“

with the integral etiended over a suitable closed path, one finds for y
a differential equation which may be satisfied for

-l+p2
n = -pl by y=s

and for

-l+pl
n. -P2 by Y=s ‘

Therefore

and

w”o-v-:jp’s-’+p’ds
are integrals of equation (VI’). The integrals are etiended best over
a path which leads from R(s) . +M around the points s =0 and s .Z
backto R(s) = +M.

Since

J -3(Z - S)-P16
-l+p

e 2ds



1,

f is analytically regular in

‘1 = c1

‘2‘CJ’”3F-Y’2s-l+p’ds
One can show that

m

v= z ~a

cf,.-~
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the neighborhood of z = O, there is

Je-s(l - :jp’s-’+p2ds

)

are the general solutions of equation (V) and likewise are represented
by definite
this and to
in terms of

14. We
radial flow

integrals in closed form. “I-shallperhaps refer back to
the connection with the representation and the development
Bessel functions elsewhere.

THIRD PART

Neighborhood Solutions to Radial Flow

shall first look for steady neighborhood solutions to the
(pages 12 and 13) by putting

V =f(T) + p(g,r)

,
1

1
where p is assumed to be a small quantity, the square of which is

1!
.1 neglected.

~’
f

We then obtain for f the former equation

kL

~

,-
f(~) + lff? ~: f’f’l.= o~.I

‘,,

,1

i
i

kfi—..,-..,-,..,. ............................-. ,.................————--—.——.————
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with f‘ = u and integrating once

u 12“+4 U+-U +C=o
o

For p we obtain -

aAp +Uam 2U’ b U“ &I
at

–—-——-—— =aAAp
r Zh- 4 a9

r
r3 &

where

A=lar++A_f
r & r2 aq2

Since the differential equation in the steady case remains unchanged
when r and p each are multiplied by an arbitrary factor, there must L

exist solutions of the form

One obtains for w the differential eqyation

W~+W’’2A2-4A+J+ZU -Au +Zu’w’+
( a o ) a

(WL4--4A3+2A2+2A2-
~3

)
U+lul’ =0 (VII)

a a

We are particularly interested in free flows and thus in periodic solu-
tions in T.

As concerns the uniqueness of the pressure (see paragraph 10,
page 28), one obtains by a simple calculation, the condition

f[
A2 2fiwu- (A - 2)]dQ = O

0
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On the other hand, there follows from the above differential equation
itself, by integration over the interval from O to 21r with assump-
tion of periodicity

so that in general the uniqueness of the pressure follows from the peri-
odicity except for the case when ?L=2.

For free flow, u itself is a periodic function of T; the period
is an integral w part of Zfi. However, it is not necessary that w
have the same period as u; but this period must likewise be an integral
part of 2fi.

Since

u It= -c - 4u-~u2
a

as well as

u!2. _2cu- 4U2-$ ‘3+ D ‘*kl -‘)(U- ‘J(” - ‘3)

may be rationally
instead of v as

expressed by u, it will be useful to introduce u
independent variable in eqyation (VII). Because of

dw tW’=—u
du

w 11 _ d2wut2 +dwull
du2 du

111 +dwultld3wu,3 + 3 &ulull du
w =—

dus du2

wIV_d4wut4+6Auf2u1 t+ 3~uft2+4AuIuf I! +dwurv
4du 3du du2 du2

du

I -—
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and because of

‘N=(-4-W’’+’2 “U’’’=4+)U)2’2
all coefficients of the new equation are integral and rational in u;
indicating the degree, one writes them

4 d3w 2
R~fi+R5— + R4 fi+R ~+R2w=0

3 du
du ~u3 duz

(VII’)

with

R6=u
‘4 =#-1 - ‘)2F - ‘2)2F - ‘3)2

From the form (VII) one can see that w possesses singularities
only where they occur for u, thus certai~y not in the real part of T
(which is of interest); equation (VII’) shows that, as a function of u,
w becomes singular only at the branch points elYe(2~e3.

Since R5 = 6U’2U11 is divisible by (el - U)(U - e2)(u - e3)~

the points ‘1Je2’e3 are determinate points, and since the degree of

the coefficients decreases steadily by 1 with the order of the deriva-
tives, u = @ ~lso is a determinate point; the differential equa-
tion (VII’) belongs to the Fuchs class.

A well-known calculation yields as the four roots of the determining
equation for the points e the values

.)

o =1 3
‘1 = ‘2 ‘3=5 ‘4=2

Although, therefore, two root differences here are integral, no loga-
rithmic appear irfthe developments: For from the form (VII) there fol-
lows that at the points ~ for which u becomes = e, where, therefore,
u and u’ are regular functions of Q, w also must be such a func-
Lion, whereas ln(u - e) does not possess this regular character.
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Therefore, the solutions of equation (VII’) have at every point e the
form

u=

other singularities do

For u = m there

e) + J=-22(.e)

not exist in a finite domain.

results the determining equation

‘which has the roots

which me independent of k, and the roots

which are dependent on X.

Continuation
\

15. Solutions with the real period 2Yt (this period must be present
at least in case of free flow) will exist only for certain h. In
analogy with Hermite’s method for Laine’s differential equation, one can
proceed as follows:

lf ‘1’W2’W3’W4 are a fundamental system of equation (VII), the

W(q + 2Yr) are expressed homogeneously linearly by the w

4
WV(CP+ 2YC)=

7
W()%,11 v~

P=
(V =1,2,3,4)



40 NACA TM 1342

There certainly exist periodic functions of the second kind, that
is, there exist solutions w for which

W(q + 2YC)=

This u is a root of the eqution of

%11- aa12

a21 a22 - u

a31 a32

a41 a42

aw(~)

the fourth degree

a13 a14

a23 a24

a33 - a a34

a43 a44 - a

=0

If a periodic solution is to exist, CL= 1 must be a root, and one
obtains for A the equation

D(l,A) = O

The characteristic exponents which were
attempts of putting

w = u + const,
‘=Fmdw=

calculated suggest the

U( ‘a - ‘)(U - ‘p)

Elementary calculation yields the following particular solutions:

1. The trivial possibility w = u for A = O

2.w=u for k=2, that is

p . ~zu

V=f(q) +ar2f’ (q)
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where a must be small and therefore With the same approx~t ion

* = + + CLF)

so that the st reamlmes are approximately the 6P Irals

f’ remmns the same elllpt IC funct Ion d~scussed before m the case of

radml flow. It IS true that this flow now cannot exist as free flow,

s uace this 1s precusely the except ~onsl case k = 2 (see page 37); and
the condition for the unqueness of the pressure can certainly not be

satlsfled for w = u.

S.w=u+su, when k=l and C=3uwhencefore1 -e2 < Ufi

no cent radict ion results.

k. w = {~ for k = -1 and e2 = . . This solutmn has a

period twice that of u; llkewme,

‘=-

fork =-land el. O.

5. w= ~(el -u)(u - e3) or w= J(u - e2)(u - e3) when A=l

and e
2

=OOrel=O. This solution too has a period twice that of u.

The large X may be easily calculated approximately from equa-

tion (VII). For such large J. there 1s in first approxuaation

JN
+ 2A2W ‘ ‘ +L4W. O

that is, ~ = eH.lQ (we restrict ourselve6 to the periodic solut Ions),

so that ~ is the per~od. The karge set-apart L.-values are therefore

aPProx~tely integral.

F inall.y, one case rmay be calculated quite elementarily: the case

when u is constant, the basic flow therefore an all around uniformly

distr~buted flow.

_____ . . ..- .— -— ———..
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This case is also of significance for the more general one since
4according to a well-known theorem by Cauchy and Boltzmann the period

of w in first approximation is obtained if the constant mean value is
inserted for the periodic u, under the presupposition that the larger
fluctuation el - e2 be sufficiently small.

For constant u there follows from equation (VII), page 36

thus with the formulation

w = euiq

~4
(

- pz 2A2 -
)

2A+4+UU +A4-4A3+4A2+A2WU =()
a is

This equation has four roots

so that all integral positive and negative k are possible (potential
motions) as well as all h which are calculated from

with integral p.

For the case u = const, that is:

16. For the radial flow which is uniform all around, the unsteady
neighborhood solutions also can be given.

%Oltzmann, kS. Abh., Bd. 1, S. 43.
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The differential equation now reads (see page 36)

aAp +uaAp
at

–—=a AAp
r &

One may integrate it either by means of the formulation

(n integral) and thus arrives at the differential equation

which may be solved
(compare page 32)

whereby one obtains

by Bessel functions, or by means of the formulation

()rz~ . eniq~ _ . eniqr%r(z)
40-t

for w(z)

(zdw!l +zwlm+l-

For z = O this equation has
tion has the real roots

P=:-

the differential equation

)(X-+z+w )m2-n2-~=0
2CT 4

a determinate point, the determining equa-
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By introduction of

assumes the form

NACA TM 1342

the roots Pl and pz the differential equation

\

This is, however, exactly the
that everything said about it

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics

-L G / J-L

differential equdtion (VI’) of page 33 so
there is also valid here.

NACA-Langley -1-16-53 -1000
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